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Abstract

In a commonly implemented version of the vorticity–velocity formulation, the governing equations for the fluid dynam-
ics are expressed as two Poisson-like velocity equations together with the vorticity transport equation. However, for some
flows with large vorticity gradients, spurious mass loss or gain can be observed. In order to conserve mass, a modification
to the vorticity–velocity formulation is proposed, involving the substitution of the kinematic definition of vorticity in
certain terms of the fluid-dynamic equations. This modified formulation results in a broader computational stencil when
the equations are in a second-order-accurate discretized form, and a stronger coupling between the predicted vorticity and
the curl of the predicted velocity field. The resulting system of elliptic equations – which includes the energy and species
transport equations for the reacting flow case – is discretized with finite differences on a nonstaggered grid and is then
solved using Newton�s method. Both the unmodified and modified vorticity–velocity formulations are applied to two prob-
lems with high vorticity gradients: (1) incompressible, axisymmetric fluid flow through a suddenly expanding pipe and (2) a
confined, axisymmetric laminar flame with detailed chemistry and multicomponent transport, generated on a burner whose
inner tube extends above the burner surface. The modified formulation effectively eliminates the spurious mass loss in the
two test cases to within an acceptable tolerance. The two cases demonstrate the broader range of applicability of the
modified formulation, as compared with the unmodified formulation.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of the present work is to extend the applicability of the vorticity–velocity formulation of the fluid-
dynamic equations to numerical simulations that have previously demonstrated an appreciable spurious mass
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loss or gain. This paper focuses on the solution of the vorticity transport equation with two Poisson-like
velocity equations in cylindrical coordinates for axisymmetric problems on nonstaggered grids. When one
or more solid protrusions are introduced, such as a corner of a suddenly expanding pipe in a nonreacting flow,
or the solid end of an extended reactant tube in a chemically reacting flow, these protrusions can generate large
gradients in vorticity (an order of magnitude larger than those observed in simulations without solid protru-
sions), which can often prevent continuity from being satisfied, even within a converged solution. With an eye
toward simulating flames in geometrically practical configurations, the modified vorticity–velocity formula-
tion developed here ensures continuity and it is an important step toward enabling the simulation of reacting
flow with detailed chemistry for a broader range of burner geometries. To obtain rapidly converging, accurate
solutions, a fully implicit solver is used for the calculations presented in this paper, since it has proven to be
more computationally efficient than explicit solution methods [1].

Based on a review of the vorticity–velocity formulation and its application in fluid flow computations [2],
one can identify three common versions of the formulation that are currently in use. All three employ the
vorticity transport equation, which is derived by taking the curl of the momentum conservation equations.
In addition, all three are attractive because pressure is eliminated from the fluid-dynamic equations, and thus
pressure boundary conditions do not need to be specified. However, the versions differ in their choice of
equations used to describe the velocity field. The first is the integro-differential approach, which involves an
integral formulation of the continuity and vorticity equations and was developed in the early 1970s by Wu
and Thomson [3]. This version of the formulation has generated flow solutions that agree well with experimen-
tal and other computational results for many time-dependent, two-dimensional aerodynamic flow problems.
The second version, in the form of a Cauchy–Riemann system, describes the velocity field using the continuity
equation and the kinematic definition of vorticity (i.e., vorticity equals the curl of velocity). In [4], Gatski et al.
have applied this approach successfully with compact finite-difference schemes, solving both two-dimensional
(2D) and three-dimensional (3D) stagnation point and driven cavity flows. While both of these versions of the
formulation satisfy continuity explicitly, neither version is particularly well suited to a fully implicit solver. The
first version becomes very expensive computationally due to its integro-differential nature, and the second
version requires careful treatment (to avoid spurious wave propagation), because two of its three governing
equations are hyperbolic.

The third version of the vorticity–velocity formulation describes the velocity field using second order
Poisson-like equations, which are derived by combining the curl of the definition of vorticity and the gradient
of continuity. These Poisson-like equations, along with the vorticity transport equation, constitute an elliptic
set of fluid-dynamic equations. In addition to avoiding the difficulty of pressure boundary condition specifi-
cation, employing the third version of the formulation avoids the use of a staggered grid, on which variable
interpolation and grid refinement can become complicated. The third version of the formulation is particularly
attractive for calculations that use a fully implicit solver, such as Newton�s method, since the second order
elliptic nature of the equations allows an implicit solution to be achieved within a comparatively short
CPU time. This approach (i.e., solving the third version of the vorticity–velocity formulation using a fully
implicit solver) has been successfully applied to 3D steady compressible flows [5], flame calculations with
detailed chemistry [6–8], flame calculations with soot modeling [9], chemical vapor deposition modeling
[10], and unsteady laminar diffusion flames [11]. It should be noted that none of these applications had solid
protrusions in the computational domain.

Dennis and Hudson [12] as well as Wen-Zhong and Ta-Phuoc [13] have both employed a hybrid of the sec-
ond and third versions of the vorticity–velocity formulation, solving a Poisson-like equation for all but one of
the velocity components and solving the continuity equation for the last velocity component to ensure that
continuity is satisfied. Although continuity is explicitly satisfied, this method has drawbacks as well. Dennis
and Hudson point out that this procedure is possible because boundary conditions are given for all velocity
components for a closed domain. Wen-Zhong and Ta-Phuoc state that in many flow cases, selection of the
velocity component for which the continuity equation is solved is nontrivial and can affect the numerical
solution of the problem. Moreover, due to the first order form of the continuity equation, the favorable con-
vergence properties of the (previously elliptic) set of equations may be lost. To overcome this last difficulty, a
solution method using a fully implicit solver is presented by Ern and Smooke [5], in which the solution from
the fully elliptic set of equations is used as the initial guess for the set of equations containing continuity. This
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procedure is done to ensure mass conservation in the final solution and is successful when the generated initial
guess is sufficiently close to the final solution.

Numerous other investigators have studied the difficulties in ensuring continuity when the vorticity–velocity
formulation is used, and they have proposed various techniques to overcome the problem. Orlandi [14] uses an
implicit time-splitting scheme and a staggered mesh to ensure mass conservation. Labidi and Ta-Phuoc [15]
use an alternating direction implicit (ADI) algorithm to investigate flow over a circular cylinder using the Pois-
son-like velocity equations. They show that for low Reynolds flows only, when a fourth-order-accurate spatial
discretization is used in the radial direction, continuity is better satisfied than with a second-order-accurate
method. Other investigators including Daube [16] have employed the influence matrix technique on a stag-
gered grid to ensure continuity. Daube also shows that satisfying the continuity equation is equivalent to sat-
isfying the kinematic definition of the vorticity. In other words, if the numerical solution of the vorticity field
can be strongly coupled to the curl of the numerical solution of the velocity field, then continuity will be sat-
isfied. It is this property that forms the basis of Daube�s influence matrix technique, which couples the bound-
ary conditions for vorticity and velocity. This same property forms the basis for the modified vorticity–velocity
formulation that is developed in the present work.

Because this modified formulation will be used in future work to simulate unsteady flames, an important
constraint of the present work is to maintain an elliptic set of governing equations, since ellipticity is known
to ensure favorable convergence properties for fully implicit solvers such as Newton�s method. Although
Orlandi [14] and others have been successful in satisfying continuity on a staggered grid, the present work
employs a nonstaggered grid to avoid the added complexity of a second grid and the requisite variable inter-
polation. Another constraint of the present work is to use standard second order discretizations that result in a
nine-point computational stencil. This constraint is applied to minimize storage requirements and CPU time
associated with forming and solving the linear system within each iteration of Newton�s method. Finally, a
solution to the problem of ensuring mass conservation is sought that does not require excessive grid refine-
ment, so that combustion applications with detailed chemistry (often 50 or more unknowns per grid point)
can still be simulated with reasonable computational effort.

In the remainder of this paper, a modified vorticity–velocity formulation is presented that effectively elim-
inates the lack of continuity previously observed in flow domains with solid protrusions. The modified vortic-
ity–velocity formulation of the fluid-dynamic equations, when used with a fully implicit solver, can now be
applied to problems in a broader range of geometrical configurations with extreme ease of implementation.
In Section 2, the modified formulation is presented with the relevant boundary conditions. Discretization tech-
niques and numerical solution methods are described in Section 3. In Section 4, it is shown that the existing
vorticity–velocity formulation is insufficient for modeling the case of incompressible, axisymmetric flow
through a suddenly expanding pipe. The modified formulation is then applied, and the computed reattach-
ment length is shown to compare favorably to experimental results. The modified formulation is subsequently
applied to a confined, axisymmetric laminar partially premixed methane–air flame with detailed chemistry and
multicomponent transport, generated on a burner whose inner tube extends above the burner surface. The
computed solution shows a significant improvement when compared with results from the application of
the unmodified formulation to the same flame. Finally, Section 5 presents conclusions and some suggestions
for future research.

2. Problem formulation

2.1. Governing equations

We begin with the conservation equations of mass and momentum for steady laminar flow [17]. Here, q is
the density, v is the velocity vector, g is the gravitational acceleration, p is the pressure, and s is the viscous
stress tensor. The thermodynamic pressure is assumed constant since flows with low Mach number will be
considered.

Continuity:
r � ðqvÞ ¼ 0. ð1Þ
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Conservation of momentum:
qðv � rÞv ¼ �rp þr � sþ qg. ð2Þ
Neglecting the bulk viscosity coefficient, the viscous stress tensor can be written as
sij ¼ l eij �
2

3
dijðr � vÞ

� �
; ð3Þ
where l is the viscosity, eij = (ovi/oxj) + (ovj/oxi), and dij is the identity tensor. The kinematic definition of vor-
ticity is given by
x ¼ r� v. ð4Þ

To form the vorticity transport equation, the curl of the momentum equation (2) is taken, eliminating the pres-
sure gradient term. Any resulting terms having the form $ · v are replaced by x, to produce the following
elliptic equation.

Vorticity transport equation:
0 ¼ �lr2x�rl� ½2rðr � vÞ � r � x� � r � ½e � rl� � rq� g þrq� ½ðv � rÞv� þ q½r � ðx� vÞ�.
ð5Þ
To calculate the velocity field, either the Cauchy–Riemann system (Eqs. (1) and (4)) or Poisson-like velocity
equations may be used. Poisson-like velocity equations are derived by substituting the curl of the vorticity
definition (4) into the gradient of the product of 1

q and the continuity equation (1).

Poisson equation:
r2v ¼ �r� x�r v � rq
q

� �
. ð6Þ
The system of Eqs. (5) and (6) will be used as the foundation for the present work. A complete derivation of
the vorticity transport and Poisson-like velocity equations may be found in [5].

In cylindrical coordinates, the commonly used version of the vorticity–velocity formulation with Poisson-
like velocity equations is obtained when (5) and (6) are rewritten as follows, where vr and vz represent the radial
and axial velocity components, respectively.

Radial velocity equation:
o2vr

or2
þ o2vr

oz2
¼ ox

oz
� o

or
vr

r

� �
� o

or
v � rq

q

� �
. ð7Þ
Axial velocity equation:
o2vz

or2
þ o2vz

oz2
¼ � ox

or
� 1

r
ovr

oz
� o

oz
v � rq

q

� �
. ð8Þ
Vorticity transport equation:
o
2ðlxÞ
or2

þ o
2ðlxÞ
oz2

¼ � o

or
lx
r

� �
þ qvr

ox
or
þ qvz

ox
oz
� qvrx

r
þrq � r v � v

2

� �
�rq � g

þ 2 rðdivðvÞÞ � rl�rvr � r
ol
or
�rvz � r

ol
oz

� �
. ð9Þ
Eq. (9) makes use of the notation below
divðvÞ ¼ 1

r
oðrvrÞ

or
þ ovz

oz
; rb ¼ ob

oz
� ob

or
.

Eqs. (7)–(9) will be referred to as the ‘‘unmodified vorticity–velocity formulation’’. The kinematic definition of
vorticity (4), when written in cylindrical coordinates, is
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x ¼ ovr

oz
� ovz

or
. ð10Þ
Modified versions of the two equations are derived when definition (10) is inserted into the radial and axial
velocity equations, (7) and (8), within the ox

oz and ox
or terms, respectively.

Modified radial velocity equation:
o
2vr

or2
¼ � o

2vz

ozor
� o

or
vr

r

� �
� o

or
v � rq

q

� �
. ð11Þ
Modified axial velocity equation:
o
2vz

oz2
¼ � o

2vr

or oz
� 1

r
ovr

oz
� o

oz
v � rq

q

� �
. ð12Þ
It should be noted that Eqs. (11) and (12) could also have been derived by taking the radial and axial deriv-
atives, respectively, of the product of 1

q and Eq. (1). Definition (10) is also substituted into (9) in the o
orð

lx
r Þ and

qvrx
r terms to yield the modified version of (9) given below.

Modified vorticity transport equation:
o2ðlxÞ
or2

þ o2ðlxÞ
oz2

¼ � o

or
l
r

ovr

oz

� �
þ o

or
l
r

ovz

or

� �
þ qvr

ox
or
þ qvz

ox
oz
� qvr

r
ovr

oz
� ovz

or

� �

þrq � r v � v
2

� �
�rq � g þ 2ðrðdivðvÞÞ � rl�rvr � r

ol
or
�rvz � r

ol
oz
Þ. ð13Þ
The ‘‘modified vorticity–velocity formulation’’ consists of either the set of Eqs. (7), (12) and (13), or the set
(11), (8) and (13). Both (11) and (12) should not be used as part of the same formulation since they can both
be derived from Eq. (1). If both (11) and (12) were to be used, two variables (vr and vz) would be solved from a
set of two equations, which were derived from only one original equation, and favorable convergence prop-
erties would be lost. (Recall that Eqs. (7) and (8) could be used in the same formulation because their deriva-
tion makes use of both Eqs. (1) and (4).) For the remainder of the present work, Eqs. (7), (12) and (13) are
used as the ‘‘modified vorticity–velocity formulation’’, and the reason for their success is described in more
detail in the second half of Section 4.1.

For nonreacting flows, appropriate boundary conditions are needed to complete the problem definition. In
the first application examined in this paper (see Sections 2.2 and 4.1), assumptions have been made of constant
density, constant viscosity, and negligible gravitational effects, leading to appropriate simplification of the
fluid-dynamic equations.

For reacting flows, however, such as that studied in the second application of this paper (see Sections 2.3
and 4.2), not only are appropriate boundary conditions required, but the unsimplified fluid-dynamic equations
are supplemented by the energy and species conservation equations, given below. Here, T is the temperature, k
is the thermal conductivity of the reacting gas mixture, Nspec is the total number of chemical species in the
mixture, Yn is the mass fraction of the nth species, Vn,r and Vn,z are the diffusion velocities of the nth species
in the r and z directions, respectively, hn is the specific enthalpy of the nth species, cp,n is the constant-pressure
specific heat capacity of the nth species, cp is the specific constant-pressure heat capacity of the mixture, Wn is
the molecular weight of the nth species, _wn is the molar production rate of the nth species per unit volume, and
$ Æ qR is the divergence of the net radiative flux per unit volume of the mixture.

Energy equation:
qcpðvr
oT
or
þ vz

oT
oz
Þ ¼ 1

r
o

or
rk

oT
or

� �
þ o

oz
k
oT
oz

� �
�
XN spec

n¼1

qcp;nY n V n;r
oT
or
þ V n;z

oT
oz

� �� �
�
XN spec

n¼1

hnW n _wn

þr � qR þ l 2
ovr

or

� �2

þ 2
vr

r

� �2

þ 2
ovz

oz

� �2

þ ovr

oz
þ ovz

or

� �2

� 2

3
ðdivðvÞÞ2

" #
. ð14Þ



S.B. Dworkin et al. / Journal of Computational Physics 215 (2006) 430–447 435
Species equation for all reacting species (for n = 1,2, . . . ,Nspec � 1):
Fig. 1.
to scal
lamina
burner
qvr
oY n

or
þ qvz

oY n

oz
¼ � 1

r
o

or
ðrqY nV n;rÞ �

o

oz
ðqY nV n;zÞ þ W n _wn. ð15Þ
Excess species equation for inert Nspec:
Y N spec ¼ 1�
XN spec�1

n¼1

Y n. ð16Þ
Via the ideal gas law, the density can be expressed in terms of the temperature and the species mass fractions.
The gas is assumed Newtonian and diffusion is Fickian: the nth species diffusion velocity, Vn = (Vn,r,Vn,z), is
given by Vn = �Dn$ lnYn, where Dn is the diffusion coefficient of the nth species. The Soret and Dufour effects
are neglected; viscous dissipation, however, is not neglected. The flow�s small Mach number implies that the
pressure field can be obtained via the ideal gas law. The chemical mechanism employed is GRI-Mech version
2.11 with all nitrogen-containing species removed, except for N2 (the excess species in Eq. (16)), resulting in 31
species and 173 reversible reactions [18]. All thermodynamic, chemical, and transport properties are evaluated
using CHEMKIN [19,20] and TPLIB [21,22] subroutine libraries, parts of which have been rewritten and
restructured for greater speed [23]. The divergence of the net radiative flux, $ Æ qR, is calculated using an opti-
cally thin radiation submodel with three radiating species (H2O, CO, and CO2), the details of which are found
in [24–26]. For a more detailed explanation of the reacting flow model, see [27].

2.2. Boundary conditions: incompressible, nonreacting flow

The first application to be studied is that of steady, incompressible, axisymmetric, laminar flow in a sud-
denly expanding pipe. Fig. 1(a) shows the pipe, into which the flow enters at the bottom and exits at the
top. Because the flow is axisymmetric, the computational domain is two-dimensional (i.e., the right half of
Fig. 1(a)), bounded by the solid wall, the inflow plane, the outflow plane, and the axis of symmetry.

To complete the problem specification with either the unmodified formulation (Eqs. (7)–(9)), or the mod-
ified formulation (Eqs. (7), (12) and (13)), boundary conditions must be specified. On the surface of the solid
wall, a no-slip boundary condition is imposed.
(a) First application: laminar flow through an axisymmetric, suddenly expanding pipe, including coordinate orientation (not drawn
e). The presence of the sudden change in pipe diameter generates high vorticity gradients. (b) Second application: axisymmetric
r flame, including coordinate orientation (not drawn to scale). The presence of the extended inner tube to a height hinner above the
surface generates high vorticity gradients.
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Wall surface:
vr ¼ 0; vz ¼ 0; x ¼ ovr

oz
� ovz

or
. ð17Þ
Note that for any wall to which r is the normal coordinate, ovr
oz ¼ 0, and for any wall to which z is the normal

coordinate, ovz
or ¼ 0, so the vorticity boundary condition in Eq. (17) can be simplified appropriately. The flow at

the inlet is assumed to be parabolic and entirely axial.

Inflow:
vr ¼ 0; vz ¼ vzinlet
; x ¼ ovr

oz
� ovz

or
. ð18Þ
Here,
vzinlet
¼ 2vzavg 1� r

Do=2

� �2
" #

.

At the outlet, the flow is assumed to be fully developed, which is reflected in setting all the axial derivatives to
zero.

Outflow:
ovr

oz
¼ 0;

ovz

oz
¼ 0;

ox
oz
¼ 0. ð19Þ
This assumption is valid when the pipe is long enough, consistent with the analysis in [28]; indeed, all solutions
presented here are independent of the length of the expanded diameter section of the pipe. Finally, the bound-
ary conditions at the axis of symmetry are posed as follows.

Axis of symmetry:
vr ¼ 0;
ovz

or
¼ 0; x ¼ 0. ð20Þ
It should be noted that the first derivatives in all boundary conditions are discretized carefully to achieve sec-
ond-order discretization error, within the constraints of the nine-point computational stencil being used here.
Details are presented in Section 3.1.

2.3. Boundary conditions: compressible, reacting flow

The second application to be studied is that of a confined, axisymmetric laminar flame at steady state with
detailed chemistry and multicomponent transport, generated on a burner whose inner tube extends above the
burner surface. In Fig. 1(b), fuel and oxidizer enter from below through the inner tube, air enters from below
through the outer tube, and the flow exits at the top. This configuration generates a partially premixed flame,
and the inlet flow rates and composition are such that the overall equivalence ratio (defined as the inner tube
air flowrate required for complete combustion divided by the actual inner tube air flowrate) is 3.189. The com-
putational domain includes the region between the burner surface and the top of the extended inner tube wall
(as well as inside the tube wall itself) so that details of the fluid and temperature fields in this region are mod-
eled. This inclusion is only necessary in cases where the flame sits so close to the top of the extended inner tube
wall such that downward heat conduction is appreciable. Because the flow is again axisymmetric, the compu-
tational domain is two-dimensional (i.e., the right half of Fig. 1(b)), bounded by the solid outer wall, the
inflow plane (comprising the two gas inlets and the bottom of the extended inner tube wall), the outflow plane,
and the axis of symmetry. In Fig. 1(b), r1 = 0.38 cm, r2 = 0.48 cm, r3 = 4.7625 cm, hinner = 2.54 cm, and houter =
40 cm.

The governing equations consist of either the unmodified formulation, or the modified formulation,
together with Eqs. (14)–(16), which are solved (for dependent variables vr, vz, x, T, and Yn, for n = 1, . . . ,Nspec)
throughout the entire domain, except for the extended inner tube wall. Inside the extended inner tube wall
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itself, which is made of steel, T is the only dependent variable. Thus, the only governing equation to be solved
there is the heat conduction equation, with the following material properties for steel: k = 1620 J/(cm K s);
cp = 0.5018 J/(g K); and q = 8 g/cm3.

Boundary and interface conditions complete the problem specification. On the solid outer wall and the
extended inner tube wall, no-slip boundary conditions and the corresponding vorticity boundary condition
(17) are again imposed. The fluid boundary conditions are the same as those used in the incompressible, non-
reacting flow case for the inflow, outflow, and the axis of symmetry, with the inlet velocity in (18) now specified
as follows.
vzinlet
¼

2vzi 1� r
r1

� �2
� �

for 0 6 r 6 r1;

vzo½1� expð� r�r2

D

�� ��Þ � exp � r�r3

D

�� ��	 

� for r2 6 r 6 r3.

8><
>: ð21Þ
Here, vzi = 42 cm/s, vzo = 20 cm/s, and D = 0.02 cm. Results are found to be insensitive to the choice of the
parameter D, which controls the width of the fluid boundary layer in the outer inlet [29].

Temperature and species boundary conditions are specified as follows. A 3:1 molar ratio of air to methane
(at room temperature) enters the domain through the inner tube, described by the following Dirichlet
conditions.

Inflow through the inner tube:
T ¼ 298 K; X CH4
¼ 0:25; X O2

¼ 0:1568; X N2
¼ 0:5932; all other X n ¼ 0. ð22Þ
Here, Xn is the molar fraction of the nth species. Mass fractions (appearing in Eq. (15)) are related to mole
fractions by
Y n ¼
X nW nPN spec

j¼1 X jW j

.

Air at room temperature enters the domain through the outer tube, described by the following Dirichlet
conditions.

Inflow through the outer tube:
T ¼ 298 K; X O2
¼ 0:209; X N2

¼ 0:791; all other X n ¼ 0. ð23Þ

The base of the extended inner tube wall is held at a constant temperature of T = 298 K. At the opposite end
of the domain, the outlet is assumed to be far enough from the reaction zone that all remaining axial deriv-
atives of temperature and species mass fractions vanish.

Outflow:
oT
oz
¼ 0;

oY n

oz
¼ 0 for all Y n. ð24Þ
A no-flux condition is imposed at the surface of the solid outer wall.

Surface of the outer wall:
oT
or
¼ 0;

oY n

or
¼ 0 for all Y n. ð25Þ
The boundary conditions at the axis of symmetry are posed as follows.

Axis of symmetry:
oT
or
¼ 0;

oY n

or
¼ 0 for all Y n. ð26Þ
Since only the heat conduction equation is solved inside the extended inner tube wall, boundary conditions are
required for species on its surface and an interface condition is required for temperature. It is assumed that the
heat flux across the surface of the extended wall is continuous and that there is no species flux.
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Surface of the extended inner tube wall:
kþ
oT
on̂

����
þ
¼ k�

oT
on̂

����
�
;

oY n

on̂

����
þ
¼ 0. ð27Þ
Here, n̂ is the outward pointing normal to the surface of the extended wall (i.e., n̂ ¼ �r̂ on the inside of the
inner tube, n̂ ¼ r̂ on the outside of the inner tube, and n̂ ¼ ẑ at the top of the inner tube).

It should be noted that, for the reacting flow case, the first derivatives in all boundary conditions and in the
interface condition are discretized such that second-order discretization error is achieved (as described in Sec-
tion 3.1).

3. Numerical method

3.1. Discretization techniques

For each application considered here, the computational domain is discretized via a 2D tensor-product
(structured) grid, having Nr points in the radial direction from the centerline to the part of the domain with
the largest radius and Nz points in the axial direction from inflow to outflow. The total number of points,
Npoints, does not exceed Nr · Nz.

The governing equations, as described in Section 2.1, are discretized at all interior grid points. First deriv-
atives are discretized using centered differences that are second-order-accurate on uniform grids and between
first- and second-order-accurate on nonuniform grids. Second derivatives are discretized using centered differ-
ences that are second-order-accurate on uniform grids and first-order-accurate on nonuniform grids. For
convective terms, first-order upwind discretizations are employed. It should be noted that the discretizations
only involve values at points that are nearest neighbors of the point at which the derivatives are being approx-
imated. This strategy results in a computational stencil involving, at most, nine points. The Jacobian matrix
within Newton�s method (see Section 3.2) will therefore have a predetermined sparsity structure.

The boundary conditions, stated in Sections 2.2 and 2.3, are either Dirichlet or contain first derivatives. For
the outflow boundary condition, the derivatives are approximated using second-order-accurate backward dif-
ferences. However, for all other derivatives within all other boundary conditions, special treatment is required
to produce a second-order-accurate discretization within the confines of the nine-point computational stencil.
Second-order-accurate discretizations of the boundary conditions are necessary to obtain a mass-conserving
solution (see Section 4.1). While a second-order-accurate discretization could be derived by using a wider com-
putational stencil, such a discretization would adversely affect the predetermined sparsity structure of the
Jacobian matrix.

The procedure for determining a second-order-accurate discretization is as follows. Consider, for example,
the vorticity boundary condition along a solid outer wall to which r is the normal coordinate. The velocity and
vorticity boundary conditions from Eq. (17) are given as
vr ¼ 0; vz ¼ 0; x ¼ � ovz

or
. ð28Þ
The derivation of a second-order-accurate discretization for ovz
or at point (i, j), where i denotes the radial grid-

point index and j denotes the axial grid-point index, begins by expanding vz at point (i � 1, j) in a Taylor series
about point (i, j)
vði�1;jÞ
z ¼ vði;jÞz � Dr

ovz

or

ði;jÞ
þ ðDrÞ2

2

o2vz

or2

ði;jÞ

� ðDrÞ3

6

o3vz

or3

ði;jÞ

þ � � � ð29Þ
Here, Dr is the local grid spacing in the radial direction, equal to ri � ri�1. The next step is to eliminate the
second derivative from the Taylor expansion, by making use of the governing equation containing this par-
ticular second derivative. In the present work, discretizations of the boundary conditions remain unchanged
between the unmodified and modified formulations. They are derived using the governing equations from the
unmodified formulation only. For boundary condition (28), recall the unmodified axial velocity equation (8),
which has been solved for the desired second derivative, below
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o2vz

or2
¼ � o2vz

oz2
� ox

or
� 1

r
ovr

oz
� o

oz
v � rq

q

� �
. ð30Þ
Eq. (30) is now applied at point (i, j). Since the wall is parallel to the z coordinate and the no-slip condition has
been applied, o2vz

oz2 ¼ 0, ovr
oz ¼ 0 and o

ozð
v�rq

q Þ ¼ 0. Thus, at point (i, j), Eq. (30) reduces to
o
2vz

or2

ði;jÞ

¼ �ox
or

ði;jÞ
. ð31Þ
Substituting (31) into (29) and rearranging for ovz
or yields
ovz

or

ði;jÞ
¼ vði;jÞz � vði�1;jÞ

z

Dr
� Dr

2

ox
or

ði;jÞ
� ðDrÞ2

6

o3vz

or3

ði;jÞ

þ � � � ð32Þ
Another Taylor series is now generated by expanding x at point (i � 1, j) about point (i, j).
xði�1;jÞ ¼ xði;jÞ � Dr
ox
or

ði;jÞ
þ ðDrÞ2

2

o2x
or2

ði;jÞ

� ðDrÞ3

6

o3x
or3

ði;jÞ

þ � � � ð33Þ
Eq. (33) is then solved for ox
or , and the resulting expression is substituted into (32) to yield
ovz

or

ði;jÞ
¼ vði;jÞz � vði�1;jÞ

z

Dr
� Dr

2

xði;jÞ � xði�1;jÞ

Dr
þ Dr

2

o2x
or2

ði;jÞ

þ � � �
" #

� ðDrÞ2

6

o3vz

or3

ði;jÞ

þ � � �
Terms with powers in Dr of two or greater are then truncated, and vði;jÞz is set to zero due to the no-slip con-
dition, thus generating the desired second-order-accurate discretization:
ovz

or

ði;jÞ
� � vði�1;jÞ

z

Dr
� xði;jÞ � xði�1;jÞ

2
. ð34Þ
A similar procedure is applied to all other boundary conditions that contain first derivatives (with the excep-
tion of the outflow condition since second-order-accuracy is achieved there without this procedure). In order
to derive the second-order-accurate discretizations of the temperature and species boundary conditions that
appear in the reacting flow application, Eqs. (14) and (15) are used, respectively, to obtain relationships anal-
ogous to (31), which are then combined with the appropriate Taylor series expansions. In order to discretize
the two first derivatives of temperature that appear in the interface condition (27), the same strategy is
employed, making use of the energy equation in the gaseous region of the domain and the steady-state heat
conduction equation in the solid steel region of the domain.

3.2. Solution method

Once the coupled, nonlinear system of equations has been discretized as described in the previous section, a
discrete solution must be obtained on the 2D, tensor-product grid for all of the dependent variables. The prob-
lem contains a total of Ndep dependent variables at each grid point, where Ndep = 3 for the nonreacting flow
case (vr, vz and x) and Ndep = 4 + Nspec for the reacting flow case (vr, vz, x, T, and Yn, for n = 1, . . . ,Nspec). The
discretized equations are cast in residual form as follows:
F ðUÞ ¼ 0; ð35Þ

where U is an Npoints · Ndep matrix of all the unknowns at all the grid points. This nonlinear system is then
iteratively solved using a damped modified Newton�s method, in which the kth iteration takes the form
JðUkÞðUkþ1 � U kÞ ¼ �kkF ðUkÞ. ð36Þ

Here, kk is the kth damping parameter [30], and J(Uk) is the Jacobian matrix, whose predetermined sparsity
structure (based on the nine-point computational stencil being used) has no more than nine nonzero block
entries in any block row or block column.
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If the solution is converging quickly enough at a given Newton iteration, as determined by theoretical
estimates [31], then the Jacobian can be reused in the next iteration, thus reducing the number of Jacobian
evaluations. Within each Newton iteration, the linear system is solved using a Bi-CGSTAB linear solver
[32] with a block Gauss–Seidel preconditioner.

In general, the numerical procedure begins by adding a pseudo-transient term to one or more of the
governing equations, thus temporarily casting the original nonlinear elliptic equations into parabolic form.
Backward differences are used to discretize the pseudo-time terms, and Newton�s method (as described above)
solves the system at each pseudo-time level. When a specified number of adaptively chosen pseudo-time steps
[33] has been completed, all pseudo-transient terms are removed, and Newton iterations continue until a
steady-state solution is generated. Convergence is achieved when the 2-norm of a scaled correction vector
is reduced beyond a prescribed tolerance. The combined pseudo-transient and steady-state solution procedure
is discussed in greater detail in [34].

4. Results and discussion

4.1. Computational results – incompressible nonreacting flow

All calculations for the case of nonreacting flow were performed on a 2.0 GHz Opteron processor with
5 GB RAM. The prescribed convergence tolerance for Newton�s method (see Section 3.2) was set to 10�6.
Since continuity is not explicitly satisfied in either the unmodified formulation or the modified formulation,
the degree of accuracy to which a converged solution will obey continuity is not known a priori. As a measure
of how closely continuity is satisfied, the mass loss for each converged solution will be computed according to
Fig. 2.
ratio w
ln(Npo

Equati
ML ¼ max
j¼1;2;...;Nz

1� Uj

U1

� �
. ð37Þ
Here, Uj is the axial mass flux at pipe cross-section j, calculated from Uj ¼ ½
R

AðqvzÞ dA�j using the trapezoidal
rule, where A is the cross-sectional area of the domain through which the mass flux is calculated. (Negative
values denote a mass gain.)

When the unmodified formulation is discretized and solved on a uniform base grid of Nr = 21 and
Nz = 181, the converged solution displays a mass loss of 97.17% (i.e., (Uj/U1)min = 0.0283). In order to test
the effect of grid spacing, solutions are also computed on five finer grids (up to Nr = 91 and Nz = 811) that
maintain the same cell aspect ratio as the base grid. The results are shown in Fig. 2(a) for an upstream
Reynolds number of 83.2, where Re ¼ qvzavg Do=l. The plot yields the following relationship between mass loss
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(a) Axisymmetric pipe flow with sudden expansion: mass loss as a function of total number of grid points at constant cell aspect
hen the unmodified vorticity–velocity formulation is employed. Equation of the least-squares-fitted line: ML = 103.8 � 0.81 ·

ints). Re = 83.2. (b) Mass loss as a function of Nz at constant Nr when the unmodified vorticity–velocity formulation is employed.
on of the least-squares-fitted line: ML = 105.8 � 1.6 · ln(Nz). Re = 83.2.
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and Npoints: ML = 103.8 � 0.81 · ln(Npoints). When the data are extrapolated to zero mass loss, full adherence
to continuity would require a grid that is far beyond the limits set by storage and computational capabilities.
Further investigation shows that this result is independent of cell aspect ratio.

Mass loss obtained using the unmodified formulation is plotted as a function of the number of points in the
axial direction in Fig. 2(b). The plot yields the following relationship between mass loss and Nz: ML = 105.8 �
1.6 · ln(Nz). For this and various other values of Nr, mass loss is a function of (Dz)1.6, since Dz / N�1

z . This
dependence is not unexpected due to the fact that the discretization scheme contains first- to second-order-
accurate discretizations, as described in Section 3.1. When Dz is held constant and Dr is varied, mass loss
exhibits a weaker dependence on radial spacing, from which it can be concluded that the local discretization
error is dominated by axial terms. Further tests show that the presence of substantial mass loss is unaffected by
increasing the length of the computational domain.

When the modified formulation is employed, however, continuity is satisfied. A striking example of this
improvement is shown in Fig. 3(a), where the unmodified formulation exhibits almost no flow after the pipe
diameter expansion, as compared with the modified formulation. With the modified formulation, larger veloc-
ities are visible near the pipe centerline, as expected, and a recirculation zone appears just downstream of the
sudden expansion. Fig. 3(b) compares radial velocity profiles at z = 6.2 cm between the unmodified and mod-
ified formulations. It can be seen that although the overall shapes of the radial velocity profiles are similar, the
average magnitude of the radial velocity is much smaller with the unmodified formulation than with the
modified formulation. Fig. 3(c) compares axial velocity profiles at z = 6.2 cm between the unmodified and
modified formulations. The modified formulation exhibits a well-developed velocity profile with noticeable
Fig. 3. Axisymmetric pipe flow with sudden expansion: (a) Comparison of recirculation after the pipe expansion between the unmodified
formulation (upper) and modified formulation (lower). One fortieth of the axial pipe length is shown here. For greater clarity, velocity
vectors are shown at only one sixteenth of the grid points. The same vector length scale is used in both halves of the figure. Nr = 81,
Nz = 721, Re = 83.2. (b) Comparison of radial velocity profiles between the unmodified and modified formulations after the pipe
expansion at z = 6.2 cm. (c) Comparison of axial velocity profiles between the unmodified and modified formulations after the pipe
expansion at z = 6.2 cm.
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recirculation, whereas axial velocity in the unmodified formulation is monotonically decreasing from the
centerline outward and exhibiting much smaller velocity magnitudes. Fig. 4 compares normalized axial mass
flux for the unmodified and modified formulations on a grid with Nr = 41 and Nz = 361, from which it can be
seen that mass is conserved (mass loss of 0.52%) when the modified formulation is employed. This figure also
shows that axial mass flux decreases at a constant rate with respect to z, up to the pipe expansion, in the
unmodified formulation. This behavior implies that the amount by which continuity is dissatisfied is indepen-
dent of z, since the graph shows the same rate of mass loss at each axial position.

This linear decrease in mass flux can be understood when the governing equations of the unmodified for-
mulation are examined more carefully. The derivation process of the unmodified formulation is represented
schematically by Eq. (38), where (38a) represents (7) and (38b) represents (8). The solution of Eq. (7) in the
unmodified formulation implies that either both equalities in (38a) are satisfied, or that neither is satisfied.
In addition, the solution of Eq. (8) implies that either both equalities in (38b) are satisfied, or that neither
is satisfied. It is important to recall that Eqs. (7) and (8) are also used in the process of deriving second-
order-accurate discretizations of the boundary conditions (for both formulations).
Fig. 4
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Since o
orð1qr � ðqvÞÞ ¼ 0 implies that 1

qr � ðqvÞ ¼ f ðzÞ and since o
ozð1qr � ðqvÞÞ ¼ 0 implies that 1

qr � ðqvÞ ¼ f ðrÞ,
it is reasonable to assume that the observed result in Fig. 4 (i.e., that mass loss for the unmodified formulation
is dependent on r only) is caused by o

orð1qr � ðqvÞÞ ¼ 0 being unsatisfied. However, the fact that (38a) as a whole

is satisfied by the converged solution implies either that both of ox
oz ¼ o

ozðr � vÞ and o
orð1qr � ðqvÞÞ ¼ 0 are satis-

fied or that neither is satisfied. The axial derivative of vorticity, ox
oz ¼ o

ozðr � vÞ, must therefore also remain
unsatisfied.

The derivation process of the modified formulation is represented schematically by Eq. (39), where (39a)
represents the unmodified radial velocity equation (7), and Eq. (39b) represents the modified axial velocity
equation (12). The solution of Eq. (7) in the modified formulation implies that either both equalities in
(39a) are satisfied, or that neither is satisfied. The solution of Eq. (12) only requires satisfying the single equal-
ity in (39b). Eqs. (39c) and (39d) represent Eqs. (7) and (8), respectively, which are used in the process of deriv-
ing the discretizations of the boundary conditions (for both formulations). The incorporation of these
discretizations into the modified formulation thus necessitates that either both equalities in (39d) are satisfied,
or that neither is satisfied. The equivalent requirement for (39c) already exists due to the use of Eq. (7) in the
modified formulation, represented schematically by Eq. (39a):
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Since a converged solution for the modified formulation requires that o
ozð1qr � ðqvÞÞ ¼ 0 from (39b),

ox
or ¼ o

orðr � vÞ must also be satisfied from (39d). The equality x = $ · v must also be satisfied from radial inte-
gration of both sides of ox

or ¼ o
orðr � vÞ, which yields x + g(z) = $ · v, where g(z) = 0 at every axial position

since the kinematic definition of vorticity is identically satisfied by the boundary conditions imposed along
the axis of symmetry. From (39a) and (39c) it must follow that o

orð1qr � ðqvÞÞ ¼ 0. Since it is now the case that
both o

orð1qr � ðqvÞÞ ¼ 0 and o
ozð1qr � ðqvÞÞ ¼ 0, it follows that 1

qr � ðqvÞ ¼ C, where C is a constant everywhere
in the domain. Because of the particular boundary conditions imposed, continuity is identically satisfied at both
(i, j) = (Nr, 1), the point at the largest radial position along the inflow plane, and (1,Nz), the point along the
centerline at the outflow. Therefore, C = 0, and continuity is satisfied. Note that only in the modified formu-
lation do cross derivatives of velocity necessarily appear. Without these cross derivatives in the formulation, the
fluid-dynamic variables at (Nr, 1) and (1,Nz) would not appear within the computational stencil at any other
point in the domain, and the null values of C at these two corner points would be decoupled from the setting
of C (possibly to a nonzero value) in the rest of the domain. Thus, the presence of velocity cross derivatives, and
their broadening effect on the computational stencil, is essential to the success of the modified formulation.

The simulation with the modified vorticity–velocity formulation is repeated for numerous Reynolds num-
bers. Nondimensionalized reattachment length xr/h (as shown in Fig. 1(a)) is calculated as the axial position
where x = 0 along the portion of the wall after the step [35], and it is plotted versus Reynolds number in
Fig. 5. For the range of Reynolds values studied here, excellent agreement is seen between the experimental
results of Macagno and Hung[35] and the results computed using the modified formulation. Care is taken
to ensure that the calculated values for reattachment length are independent of the number of grid points
and the convergence tolerance.

4.2. Computational results – compressible, reacting flow

All calculations for the case of reacting flow were performed on a 2.0 GHz Opteron processor with 5 GB
RAM. The prescribed convergence tolerance for Newton�s method (see Section 3.2) was set at 10�4. Calcula-
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tions are performed on a nonuniform grid of Nr = 145 and Nz = 311, covering a domain of size
4.7625 cm · 40 cm. A small spacing is necessary to resolve the flame, but an equispaced grid could not be used
due to memory limitations. Thus, in the radial direction, Dr = 0.01 cm from r = 0 cm to r = 1.1 cm. The spac-
ing gradually increases to Dr = 0.35 cm at r = 2.25 cm and then gradually decreases, ending with Dr = 0.01 cm
from r = 4.7225 cm to r = 4.7625 cm. In the axial direction, Dz = 0.04 cm at the bottom of the domain from
z = 0 cm to z = 0.2 cm, which gradually increases to 0.06 cm at z = 0.3 cm. This Dz is maintained until
z = 1.06 cm and then gradually decreases to Dz = 0.015 cm at z = 2.42 cm. At z = 4.52 cm, the spacing again
begins a very gradual increase, and the largest Dz (2.0 cm) appears at the top of the domain, from z = 30 cm to
z = 40 cm.

Here, a slightly different solution method than that used for the incompressible, nonreacting flow case is
employed. First, the modified formulation (Eqs. (7), (12) and (13)) was used to obtain a solution, which con-
tained 1.92% mass loss. This outcome was satisfactory, but it was found that an additional improvement could
be made by substituting the modified radial velocity Eq. (11) for the unmodified Eq. (7), thereby employing all
three modified equations. Convergence could only be obtained when the solution exhibiting 1.92% mass loss
was used as the starting estimate for this additional run. The reasons for the difficulty in obtaining this
convergence are discussed in Section 2.1. For the remainder of this section, results obtained using the addi-
tional run are presented and are referred to as having been generated by the �modified formulation�.

Fig. 6 compares the computed normalized axial mass flux for simulations with the unmodified and modified
formulations. It can be seen that use of the unmodified formulation produces a significant amount of mass
loss, such that the mass exiting the top of the domain equals only one tenth of the mass entering the bottom
of the domain. By contrast, the modified formulation generates almost no mass loss (mass gain of 0.12%), for
the reasons outlined in the second half of Section 4.1. Fig. 6 shows a linear decrease in mass flux with respect
to z, in a portion of the axial domain, which is also discussed in detail in Section 4.1.

Solution contours for three of the dependent variables are displayed in Fig. 7, where the unmodified for-
mulation is shown on the left half of each picture and the modified formulation is shown on the right half
of each picture. Fig. 7(a) shows the computed isotherms in a portion of the computational domain, with a
maximum centerline temperature for the unmodified formulation of T = 1952 K, occurring at z = 5.8 cm,
and a maximum centerline temperature for the modified formulation of T = 1949 K, occurring at
z = 6.7 cm. Due to the unphysical reduction in axial mass flux obtained using the unmodified formulation,
the location of the peak centerline temperature is considerably lower than that of the modified formulation.
Although axial mass flux is reduced by 90% in the case employing the unmodified formulation, Fig. 6 indicates
that much of this reduction occurs downstream of the region depicted in Fig. 7. As a consequence, the discrep-
ancies in overall flame shape between the unmodified and modified formulations are diminished. For each for-
mulation, Fig. 7(a) also shows the considerable amount of downward heat conduction into the solid inner tube
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Fig. 7. Axisymmetric laminar flame: solution contours comparing the unmodified formulation (left half of each picture) with the modified
formulation (right half of each picture). Nr = 145 and Nz = 311. Three of the 35 dependent variables are plotted in a portion of the
computational domain. (a) Isotherms with a maximum centerline temperature for the unmodified formulation of T = 1952 K at
z = 5.8 cm, and a maximum centerline temperature for the modified formulation of T = 1949 K at z = 6.7 cm. (b) Isopleths of mass
fraction of methane (Y CH4

). (c) Isopleths of mass fraction of the intermediate species C2H5 with a maximum centerline mass fraction for the
unmodified formulation of Y C2H5

¼ 6:6� 10�6 at z = 4.56 cm, and a maximum centerline mass fraction for the modified formulation of
Y C2H5

¼ 6:3� 10�6 at z = 5.025 cm. See text for additional details.
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and surrounding fluid region. For example, the 400 K isotherm passes through the solid wall approximately
0.7 cm from its top edge. This heat conduction is one of two physical mechanisms responsible for the anchor-
ing of the flame, the other being the presence of a wake immediately above the extended inner tube wall.

Fig. 7(b) shows isopleths of the methane mass fraction (Y CH4
), with a maximum value for both the unmodified

and modified formulations of Y CH4
¼ 0:156 in the interior part of the inflow plane (Y CH4

¼ 0:156 corresponds to
X CH4

¼ 0:25). Due to decreased axial mass flux in the unmodified formulation computations, methane con-
sumption begins at a lower axial height than in the modified formulation, and the methane is almost completely
consumed (i.e., Y CH4

6 1� 10�4) at z = 5.4 cm. In the modified formulation, however, Y CH4
does not dip below

1 · 10�4 until z = 6.2 cm.
Fig. 7(c) shows mass fraction isopleths of C2H5, an intermediate compound whose behavior is typical of sev-

eral minor species, which are formed inside the flame and quickly oxidized (burned). The maximum centerline
mass fraction for the unmodified formulation is Y C2H5

¼ 6:6� 10�6, occurring at z = 4.56 cm, and the maxi-
mum centerline mass fraction for the modified formulation is Y C2H5

¼ 6:3� 10�6, occurring at z = 5.025 cm.
Fig. 7(c) also clearly illustrates the lower flame position associated with the unmodified formulation – again
attributable to the decreased mass flux. Because the modified formulation generates almost no mass loss, its
solution is assumed to be more physically correct. However, further work involving experimental measure-
ments would be required to determine the solution�s physical accuracy.

5. Conclusions and future directions

In this paper, a modified vorticity–velocity formulation and some second-order-accurate boundary condi-
tion discretizations are derived and applied to two test cases: incompressible axisymmetric fluid flow through a
suddenly expanding pipe; and a confined, axisymmetric laminar flame with detailed chemistry and multicom-
ponent transport, generated on a burner whose inner tube extends above the burner surface. These two cases
are chosen due to the presence of regions of high vorticity gradients, which previously have been observed to
lead to unphysical solutions when the unmodified vorticity–velocity formulation is employed. For each test
case, it is first shown that the unmodified vorticity–velocity formulation generates numerical solutions that
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do not satisfy continuity. It is then shown that the modified formulation presented in this paper is capable of
generating more physically accurate solutions that obey continuity to within a reasonable tolerance.

For the case of axisymmetric pipe flow presented here, the unphysical nature of the solution generated from
the unmodified formulation is seen to be attributable neither to the grid parameters nor to the domain length.
When the modified formulation is employed, however, continuity is satisfied and a visible recirculation zone is
present. Moreover, the predicted reattachment lengths show excellent agreement with previously published
experimental data for a variety of Reynolds numbers.

For the case of the axisymmetric laminar flame presented here, it is shown that when the modified vorticity–
velocity formulation is combined with the conservation equations for temperature and chemical species, a
solution that satisfies continuity can be generated – a result that is not observed when using the unmodified
formulation. To the authors� knowledge, the computation employing the vorticity–velocity formulation pre-
sented here is the first published numerical solution to the axisymmetric laminar flame with detailed chemistry
and multicomponent transport, generated on a burner whose inner tube extends above the burner surface.

Heading the list of future work related to the modified vorticity–velocity formulation is the task of com-
paring laminar flame solutions, similar to the one presented in this paper, to experimental data. Other future
applications of the modified vorticity–velocity formulation include its implementation in different coordinate
systems and in more complex geometrical configurations.
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